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IsoGeometric Analysis (IGA) is widely used because it links exact geometry to analysis.
When IGA is applied within the Boundary Element framework (IGBEM), and under cer-
tain boundary conditions, discretization errors can be suppressed leading to an accurate
estimation of the integration errors. By using the IGBEM for potential problems, the ef-
fect of Gauss quadrature on the accuracy of each term arising in the IGBEM is studied for
smooth geometry under constant boundary conditions. The results show that the method of
computing singular integrals in the IGBEM is efficient. Results can be improved by selecting
optimal numbers of Gauss points for both integrals.

Keywords: potential problems, isogeometric analysis, boundary element method, Gauss
quadrature

1. Introduction

In recent years, there has been an increasing interest in applying IsoGeometric Analysis (IGA)
for mechanical problems such as solid mechanics (Chasapi et al., 2022; Peng and Lian, 2022),
fluid mechanics (Opstal et al., 2015; Yan et al., 2019), acoustics (Coox et al., 2017; Alia, 2020;
Alia et al., 2022) and contact (Temizer et al., 2011; Matzen et al., 2013; Khanyile et al., 2022).
IGA has shown a superior precision over the conventional Finite Element Method (FEM) and
Boundary Element Method (BEM) for many applications (Hughes et al., 2005, 2010; Simpson
et al., 2012; An et al., 2018). Contrary to these standard methods, IGA is based on the exact
geometry because it links between the geometry design and mechanical analysis environments.

Due to Hughes (Hughes et al., 2005), this numerical method uses NURBS basis functions of
geometry to approximate unknowns. Since that pioneer work, other basis functions like Bsplines
and Bézier have been used, and other specific algorithms have been developed for IGA. In
fact, to discretize a problem, IGA is based on a patch, knot vector, control points and control
variables entities. The control entities are not physical but only fictive entities. They are used
to interpolate physical nodes and variables by using NURBS, Bsplines or Bézier functions. This
is why, for instance, a new contact algorithm knot-to-surface has been specifically developed for
IGA (Temizer et al., 2011).

Studies on the accuracy of the standard BEM focused on some specific aspects such as
the commonly applied rule of six elements per wavelength in acoustics for continuous elements
(Marburg, 2002) and the position of collocation points on discontinuous elements (Marburg and
Nolte, 2008). For 2D acoustic applications, Treeby and Pan (2009) have presented an interesting
classification of BEM errors into three categories. The first category of errors originates from
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discretization that is due to approximation of boundary variables, geometry, and their discon-
tinuities. The second category of errors concerns quadrature ones because of the approximate
evaluation of regular, singular and nearly singular integrals. Finally, the last category of errors is
related to system resolution which exhibits ill-conditioned matrices at some irregular frequencies
as well as additional errors due to the iterative solver. These three categories of errors are related
to each other, so it is difficult to separate them. This is why Treeby and Pan (2009) proposed
to set a global error constraint supposed to be appropriate within the engineering applications.
Then they discussed precision of the method when that global error was maintained.
Some numerical aspects related to errors in IGA were analyzed in previous works (Simpson et

al., 2012; An et al., 2018; Kostas et al., 2017) including development of new quadrature formulae
(Aimi et al., 2018; Calabrò et al., 2018) and the effect of Gauss quadrature on the accuracy of
singular integrals (Peng and Lian, 2022). In fact, even if the geometry is exact, a small number
of Gauss points can lead to wrong results as shown in (Alia, 2020) because the Gauss points play
the role of acoustic source points. To our knowledge, there was no direct interest in estimating
integration errors of different terms occurring in the boundary integral equation of potential
problems when solved by the IsoGeometric Boundary Element Method (IGBEM) in the case of
a standard Gauss quadrature.
The objective of this study is to identify the effect of the number of Gauss points on the

accuracy of integral involving Green’s function and the derivative of Green’s function, separately.
In fact, since in IGA simulation is performed on the exact geometry instead of the approximated
one, we suppress the discretization errors by choosing constant boundary variables on a smooth
geometry. In this article, before exploring in details the motioned numerical method (Section 3),
we review the conventional BEM in Section 2. Finally, we validate the IGBEM results in Section 4
for an annular region before studying the influence of Gauss quadrature on the accuracy of
integrals in the case of a circular domain.

2. Boundary element method for potential problems

Both the Laplace equation and the Green function are fundamental for the boundary integral
formulation of potential problems (Katsikadelis, 2016). Laplace equation (2.1) governs the po-
tential field φ in many problems like steady state heat conduction and potential flow inside a
domain V limited by a boundary S (Liu, 2009)

∆φ = 0 in V (2.1)

The Dirichlet and Neumann boundary conditions are given, respectively, by

φ = φD on SD q =
∂φ

∂n
= qN on SN (2.2)

where S = SD ∪ SN , n is the boundary normal pointing away the domain, and q is the normal
derivative of φ.
By using the second Green identity, the well-known Boundary Integral Equation (BIE) can

be derived from the preceding boundary value problem and expressed as in the following (Liu,
2009; Wu, 2000)

∫

S

(

G(P,Q)
∂φ(P )

∂n
− φ(P )∂G(P,Q)

∂n

)

dS(P ) = CQφ(Q)

CQ =










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1 Q ∈ V
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0 Q /∈ (S ∪ V )

(2.3)
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Green’s function is expressed in two dimensions as G(P,Q) = −(1/2π) log r (Liu, 2009).
Here r is the distance between two points Q and P . The BIE is to be used with the Neumann
condition (describing ∂φN (P )/∂n on SN ) and Dirichlet condition (describing φD(P ) on SD).

To solve numerically the BIE for unknown boundary variables, the geometry is discretized
into ne elements and nd nodes. In the case of isoparametric boundary elements, both geometry
and boundary variables are represented by the same Lagrange shape functions Ni. Over an ele-
ment, a varying quantity f is approximated by f =

∑ℓ
i=1 fiNi(u) where u is the local coordinate

(−1 ¬ u ¬ 1) and ℓ is the number of nodes per Lagrange element. f can be the potential,
derivative of the potential, or node position given by x and y. The discretized form of the BIE
can be written as

( ne
∑

e=1

ℓ
∑

i=1

ℓ
∫

−1

G(P,Q)NiJe dξ

)

qi +

( ne
∑

e=1

ℓ
∑

i=1

1
∫

−1

∂G(P,Q)

∂n
NiJe dξ

)

φi = CQφ(Q) (2.4)

where Je is the Jacobian of transformation of the e-th element.

Despite the introduction of these boundary conditions, only half of the boundary values
are known from the boundary conditions (Wu, 2000). The other half needs to be calculated
by collocating the point Q on the entire boundary. Collocation consists in placing the point Q
successively in each node i of the boundary. For each collocation node i and element Sj , the
boundary integration based on Eq. (2.4) is performed to produce two elementary vectors in 2D
problems denoted by gi and hi. After assembling the elementary vectors into global matrices
and then arranging them in such a way that all the unknowns are located on the left-hand side,
solving the obtained system enables one to calculate the boundary unknowns (Wu, 2000).

Usually, the used geometry introduces errors because it is not exact. In what follows, the exact
geometry based on NURBS (Non-Uniform Rational BSplines) combined to BEM is adopted to
suppress the errors due to domain approximation. The next Section concerns the definition of
the NURBS basis functions and their introduction into the BEM.

3. Isogeometric boundary element method

3.1. Preliminary notions

Among the curves designed by control points, Bsplines and NURBS can be cited. It is known
that Bsplines are very flexible in geometry design. Their flexibility is originating from their
basis functions Ni,p which have quasi-local control. These basis functions are different from the
shape functions Ni of the standard BEM. Note the order of interpolation p in Ni,p. The basis
functions Ni,p are constructed for a knot vector, E = {u1, u2, . . . , un+p+1}, a non-decreasing
sequence of coordinates in the parametric space. Each knot vector corresponds to a patch of
elements. The knot vector can be uniform (nodes are equally-spaced in the parametric space) or
not (repeated nodes) (Hughes et al., 2005). It serves to divide the parametric space into elements
and to modify the shape of the curve.

Equation (3.1) defines a Bspline curve T of the order p (Hughes et al., 2005)

T (u) =
m
∑

i=1

Ni,p(u)Pi = P
TN(u) (3.1)

where Pi are the Bspline control points, m is the number of both basis functions and control
points. The basis functions Ni,p are calculated by the following recursive expression (Hughes et
al., 2005)
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Ni,0(u) =

{

1 ui ¬ u ¬ ui+1
0 otherwise

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) p ­ 1
(3.2)

The most important properties of the Bspline basis functions are the partition of unity, Eq.
(3.3), linear independence, Eq. (3.3)2, and its quasi-local support because some control points
influence p+ 1 elements

m
∑

i=1

Ni,p(u) = 1

m
∑

i=1

aiNi,p(u) = 0 ⇐⇒ ∀i ai = 0
(3.3)

The rational basis functions of NURBS are defined as following

Ri,p(u) =
wiNi,p(u)

∑m
i=1 wiNi,p(u)

=
WN(u)

W (u)
(3.4)

where wi is the weight of the i-th basis function and W (u) is the weight function. Both Bsplines
and NURBS shared the same properties listed above, and the NURBS curve is deduced by

T (u) =
m
∑

i=1

Ri,p(u)Pi = P
TR(u) (3.5)

Besides the flexibility of Bsplines and NURBS, they present an important feature of easy
refinement without deploying a great effort. In fact, three types of refinement can be used in
IGA (Hughes et al., 2005). In h-refinement, the knot insertion consists in adding new knots
and, therefore, new elements. Each new element is located between knots of different values.
During this process, the number of control points is increased by one after each knot insertion.
Consequently, the control points require to be redefined at each new insertion. Moreover, the
new basis functions have to be recalculated for the new knot vector. p-refinement consists of
the order elevation by increasing the multiplicity of each knot component by one. This increases
the number of control points and basis functions but keeps the geometry and parameterization
unchanged. The last type, called k-refinement, is a combination of both knot insertion and order
elevation.

3.2. Computational aspects related to IGBEM implementation

Now it is easy to link the geometry design and the analysis based on the BEM environment.
Let us consider a geometry that is defined by NURBS. For a set of control points Pi(x

P
i , y
P
i ),

the geometry of the domain is defined by

x =
m
∑

i=1

Ri,p(u)x
P
i y =

m
∑

i=1

Ri,p(u)y
P
i (3.6)

where x, y are the coordinates of a boundary point, u is its parametric coordinate, and m is the
number of control points per element.
In IGA, the potential and its normal derivative are expressed in Eq. (3.7) by the same basis

functions that are used to define the geometry

φ =
m
∑

i=1

Ri,p(u)φ
P
i

∂φ

∂n
= q =

m
∑

i=1

Ri,p(u)q
P
i (3.7)
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Unlike the traditional BEM, φpi and q
p
i represent the potential and its normal derivative at

the control points, respectively. For each collocation point Pi and element, S
e
j correspond two

elementary vectors hi and gi given by

hi =

∫

Se
j

∂G

∂n
Ri,p(u) dS =

1
∫

−1

∂G

∂n
Ri,pJe du

gi =

∫

Se
j

GRi,p(u) dS =

1
∫

−1

GRi,pJe du

(3.8)

Since the control points do not necessary belong to the boundary, they cannot play the role of
collocation points in the IGBEM. Instead, Greville abscissae are used as collocation points for
the IGBEM (Kostas et al., 2017; Johnson, 2005). Their expression is given by

ucoli =
p
∑

j=1

ui+j
p

(3.9)

where ui is the i-th component of the knot vector.
When the collocation point Qi does not belong to the element S

e
j , the integral is regular and

Gauss quadrature can be used as expressed in Eq. (3.10). In Eq. (3.10), f
(1)
i = (∂G/∂n)Ri,p(uk)Je

and f
(2)
i = GRi,p(uk)J are two functions evaluated at the k-th Gauss point uk of weight wk.

Moreover, nGpR represents the number of Gauss points used in the regular integration

hi =
nGpR
∑

k=1

f
(1)
i wk gi =

nGpR
∑

k=1

f
(2)
i wk (3.10)

To show the superiority of the IGBEM over BEM in the case of regular integrals, we consider
convergence of I0 =

∫

dS/r2 over a quarter circle of radius 2 (Fig. 1). The calculation of the
L2 norm of the relative error is based on the analytical scheme provided by Mahajerin (1983)
for 19 points denoted by P in Fig. 1.

Fig. 1. Geometry of the quarter circle and location of points used to calculate integral I0 =
∫

dS/r2

Figure 2a represents a clear illustration of the accuracy of the IGBEM. Actually, only 4 ele-
ments and 4 Gauss points are required to integrate 1/r2 over the quarter circle. 4 Gauss points
and 10 elements are sufficient to achieve an error of the machine precision order. With only
2 Gauss points and 10 elements, we obtain an error of the order of 10−8. On the other hand, the
BEM seems to be less accurate than the IGBEM. In fact, BEM errors are greater than those
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Fig. 2. Errors in the evaluation of I0 =
∫

dS/r2 over the quarter circle with respect to the elements
number for different numbers of Gauss points in the case of (a) IGBEM and (b) BEM

of the IGBEM (Fig. 2b). In the BEM, the minimum error of the order of 10−7 is archived for
3 Gauss points and cannot be improved anymore by increasing the number of Gauss points.
When the collocation pointQi belongs to the element Sj, the integral is singular. To overcome

the singularity problem, the procedure proposed initially by Wu (2000) for the BEM is applied
and adopted here to the IGBEM. It consists in dividing the element at the collocation point
into left and right regions and improving the convergence rate by considering two successive
changes of variables (1) z2 = ε(up − u), and (2) z =

√

1 + εup(1 + η)/2 where up is the position
of the collocation point in the parametric space. The integration over the left region ε = +1
is performed separately from the right region ε = −1 in Eq. (3.11). For both regions, we use
the same number of Gauss points nGpS. These variable changes apply also to the elementary
vector hi. Therefore, Eq. (3.11) written for gi can be extended to hi by only replacing the Green
function by its normal derivative

g
(ε)
i =

√
1+εup
∫

0

GRi,pJe2z dz =

1
∫

−1

GRi,pJe2z
dz

dη
dη (3.11)

Finally, when the collocation point lies close to the element but not in, then the integral is
nearly singular. In this paper, we choose to treat the nearly singular integrals exactly as the
regular ones without any additional treatment. The consequences of this choice will be discussed
later. In what follows, the number of degrees of freedom is denoted by nDOF for IGBEM and
nDOFL for the BEM, where L is used for Lagrange.

4. Results

The previous equations have been implemented to handle several patches and closed domains,
and numerical simulation is performed only for quadratic elements. To validate the IGBEM
result, we consider an annular region for which the potential field φa is prescribed on the inner
boundary Sa of radius a. The outer boundary Sb of radius b is subjected to the normal derivative
∂φb/∂n.
The analytical solution of this axisymmetric problem is given by (Liu, 2009)

φ(r) = φa + b
∂φb
∂n
log
r

a

In simulation, we used the following parameters: a = 1 with φa = 100, and b = 2 with
∂φb/∂n = 200.
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For a clear illustration of the IGBEM mesh, a small number of elements of the same length
(ne = 24, nDOF = 32) have been used to plot Fig. 3a in the case of the IGBEM. Figure 3b
shows the internal field points used to calculate the potential field inside the annular region.
These internal field points are located between r = 1.1 and r = 1.9.

Fig. 3. (a) NURBS-based geometry and the IGBEM mesh of the annular region, (b) mesh of the
internal points

Contrary to the BEM, IGBEM looks to be in good agreement with the analytical solution in
terms of potential distribution inside the annular region (Fig. 4). Note that the BEM result has
been obtained for the same number and type of elements, i.e. 24 quadratic elements but with
nDOFL = 48.

Fig. 4. (Color online) Potential distribution calculated: (a) analytically, (b) by IGBEM, (c) BEM

For a better comparison, the relative error for the field points located on x-axis is plotted
in Fig. 5. One can see that the quality of the IGBEM solution is better than that of the BEM
but the IGBEM appears less accurate for points close to the boundaries in comparison to points
located far from the boundary. Consequently, we can conclude that: (1) nearly singular integrals
are poorly integrated and (2) treatment of the singular integrals is sufficient. To check this
initial conclusion, leting examine in detail the errors made separately on the integrals of the
Green function and its derivative noted, respectively, by

I1 =

∫

G(P, q) dS I2 =

∫

∂G

∂n
(P, q) dS

In what follows, instead of computing I1 and I2 over the annular region, the geometry is
simplified. From now on, let us limit the geometry to only the outer boundary of the last
example, i.e. a circle of radius 2 as shown in Fig. 6.
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Fig. 5. Errors in the potential at internal field points located on the x-axis for IGBEM and BEM

Fig. 6. NURBS-based geometry and the IGBEM mesh of the circle

4.1. Errors in I1 =
∫

[∂G(Q,P )/∂n] dS(P )

To examine the quadrature errors, we considered the case of an internal potential problem
consisting of a circle of radius 2. A simple way to study the quadrature error in the term
involving the normal derivative of Green’s function I1 =

∫

[∂G(P,Q)/∂n] dS(P ) is to calculate
CQ = −

∫

[∂G(P,Q)/∂n] dS(P ). The exact value of CQ is given by Eq. (2.3).
To show the superior precision of the IGBEM over BEM, the variation of the regular integral

error of CQ at an internal point as it gradually approaches the boundary of the circle along the
x direction is plotted in Fig. 7a. Note that in this figure, x varies from −1.99 to 1.99 with a space
step of 0.0025 in order to show all variations. As expected, the IGBEM behaves better than the
BEM. In fact, to obtain the same error, the IGBEM requires almost a half of the number of
degrees of freedom required by the BEM. When the point is far from the boundary, the regular
integral error is of the order of the machine precision (Fig. 7a) but it increases as the mesh gets
coarser (Fig. 7b).
For points close to the boundary, the integral is nearly singular. One way to improve the

precision is to increase the number of Gauss points for all elements (Fig. 8a). The other way
is to gradually increase the number of Gauss points as the point gets closer to the integration
element (Fig. 8b). To limit the maximum value of error to 10−8 in Fig. 8b almost everywhere,
30 Gauss points have been used to the points close to the boundary (within the size of an
element). According to their distance from the boundary, 8, 6, or 4 Gauss points have been
considered for the other points.
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Fig. 7. Variation of errors of CQ at an internal point as it gradually approaches the boundary of a circle:
(a) comparison between the BEM and IGBEM for 6 Gauss points per quadratic element, (b) effect of
DOF number for 6 Gauss points per quadratic element. nDOF and nDOFL denote the DOF numbers

in IGBEM and BEM, respectively

Fig. 8. Variation of errors of CQ at an internal point as it gradually approaches the boundary of a circle:
effect of (a) the number of Gauss points for 44 DOF and (b) gradual increase of the number of Gauss

points as the internal point gets closer to the boundary

To our surprise, the variation of CQ errors at collocation points presents an optimal number
of Gauss points denoted by nGp∗. This optimal number increases when the mesh gets coarser
as shown in Fig. 9a. For example, this optimal number is equal to 4 for 68 and 84 DOF. It is
equal to 5 for 52 DOF.

To examine this result, we perform integration by using different numbers of Gauss points
for singular and regular integrals that we denoted by nGpS and nGpR, respectively, in Figs. 9b
and 9c. These figures show variation of CQ errors for 52 and 84 DOF. According to Fig. 9a,
the error in the case of 84 DOF is minimal when nGp∗ = 4. In Fig. 9b, we can see that by
varying nGpR from 2 to 20 in the case of 84 DOF while maintaining nGpS = nGp∗ = 4,
the error decreases in comparison to the case when nGpS = nGpR and becomes constant for
nGpR ­ 4. However, if nGpR = nGp∗ = 4 then we obtain the same error as in the case of
nGpS = nGpR (see the case of 84 DOF in Fig. 9c). This is also true for 52 DOF.

We conclude that the overall error in I1 is dominated by the contribution of quadrature
errors of the singular integrals. The choice of the nGpS number is crucial for obtaining a better
precision. As soon as the optimal number nGp∗ is chosen to be equal to the number of Gauss
points for singular integrals, one can afford to use the lower number nGpR and obtain the same
quality of precision.
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Fig. 9. Influence of the number of Gauss points on convergence of CQ at collocation points:
(a) identification of an optimal number of Gauss points nGp∗ improving the convergence and effect of
selection of the number of Gauss points on the precision of (b) regular integrals and (c) singular

integrals for 52 and 84 DOF. nGpS and nGpR denote the number of Gauss points used in singular and
regular integrals, respectively. nGp∗ is the optimal number of Gauss points as obtained from Fig. 9a

4.2. Errors in I2 =
∫

G(Q,P ) dS(P )

In this Section, we study the quadrature error in the term involving Green’s function denoted
by I2 =

∫

G(Q,P ) dS(P ). The reference solution is computed using analytical integration on an
arbitrary line segment proposed by Liu (2009). In Fig. 10 the variation of the regular integral
error of I2 is plotted at an internal point as it gradually approaches the boundary of the circle.

According to this figure, I2 behaves like I1 for internal points. Firstly, the IGBEM is more
accurate than the BEM (see Figs. 7a and 10a). Secondly, when calculated with the IGBEM, the
precision of I2 can be improved by either increasing the number of Gauss points or by using fine
meshes (see Figs. 10b and 10c). Another similarity with I1 is that a better precision is achieved
far from the boundary contrary to points situated near the boundary for which computing of
nearly singular integrals is required. However, I2 convergence is obtained with a higher error
in comparison to I1. Actually, by comparing Fig. 10b to Fig. 7b, we can see that for the same
DOF number, the error is the highest in I2. Moreover, the effect of the nearly singular integrals
is less important in I2 than in I1: the range of points with the smallest error was wider in I2
than in I1. Therefore, far from the boundary, the regular terms in I2 require more Gauss points
than in I1 (see Figs. 10c and 8a), but close to the boundary, I2 behaves better than I1.

I2 behaves differently from I1 when the collocation points are involved in the integral. From
Fig. 11a, one can notice the absence of an optimal number of Gauss points. On the contrary, the
error decreases by increasing either DOF or number of Gauss points. Moreover, I2 convergence
has a higher error than I1 even by using 20 Gauss points in comparison, for example, to 10 in the
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Fig. 10. Variation of I2 errors at an internal point as it gradually approaches the boundary of a circle:
(a) comparison between the BEM and IGBEM for 6 Gauss points per quadratic element, and the effect
of (b) DOF number for 6 Gauss points per quadratic element and (c) the number of Gauss points

for 44 DOF

Fig. 11. Influence of the number of Gauss points on the convergence of I2 at the collocation points:
(a) for different DOF numbers and (b) effect of the number of Gauss points on errors for 84 DOF.

nGpS and nGpR denote the number of Gauss points used in singular and regular integrals, respectively

case of I1 (Fig. 9a). Since the regular integrals in I2 give small errors, consequently, the noticed
large error in Fig. 11a originates from the contribution of singular integrals. This conclusion
can be confirmed by examining Fig. 11b according to which for a given nGpS number (for
example 20) fewer nGpR Gauss points are needed (5 in our example) to obtain the same error.
A more interesting result is that for a given nGpS number, there is an optimal nGpR number
for which a smaller error is obtained (4 in our example).
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5. Conclusion

Thanks to isogeometric analysis, the geometry is exact and its discretization errors in the IGBEM
can be suppressed. This allows a better estimation of quadrature errors when constant boundary
conditions are assumed over a smooth geometry. In this article, we have examined separately
quadrature errors of the integral involving the derivative of Green’s function (noted I1) and
that one involving Green’s function itself (noted I2) in the case of a 2D potential problem. We
evaluated these integrals for points inside the domain (case of regular integrals only) and for
points on the boundary (case of both regular and singular integrals).

Our important result is the identification of an optimal number of Gauss points for singular
integrals of I1. Moreover, although this number is absent in the case of singular integrals of I2, we
found that for each number of Gauss points chosen for singular integrals in I2 there corresponds
an optimal number of Gauss points for regular integrals. These results indicate that with a
judicious choice of the number of Gauss points for the singular and regular integrals of I1 and I2
we can improve convergence of the IGBEM. Moreover, we found that I1 is more accurate than I2.
Nevertheless, convergence remains dictated in both cases by the number of Gauss points used
in the singular integrals.

In addition, the use of the Greville abscissae and the treatment of singularity by splitting
the integration domain into two regions limits generalization of these conclusions. The study of
the behavior of the errors for other techniques of singularity treatment and other collocation
point positions deserves further investigations. Finally, our choice to compute the regular and
nearly singular integrals in the same way led to large errors at points located near the boundary
compared to the singular integrals. Hence, we need to give more importance to these integrals
by treating them more rigorously.
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